Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Sci Rep ; 14(1): 5917, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467645

RESUMO

Multisystem Proteinopathy 1 (MSP1) disease is a rare genetic disorder caused by mutations in the Valosin-Containing Protein (VCP) gene with clinical features of inclusion body myopathy (IBM), frontotemporal dementia (FTD), and Paget's disease of bone (PDB). We performed bone scan imaging in twelve patients (6 females, 6 males) with confirmed VCP gene mutation six (50%) of which has myopathy alone, four (33%) with both PDB and myopathy, and two (15%) were presymptomatic carriers. We aim to characterize the PDB in diagnosed individuals, and potentially identify PDB in the myopathy and presymptomatic groups. Interestingly, two patients with previously undiagnosed PDB had positive diagnostic findings on the bone scan and subsequent radiograph imaging. Among the individuals with PDB, increased radiotracer uptake of the affected bones were of typical distribution as seen in conventional PDB and those reported in other MSP1 cohorts which are the thoracic spine and ribs (75%), pelvis (75%), shoulder (75%) and calvarium (15%). Overall, we show that technetium-99m bone scans done at regular intervals are a sensitive screening tool in patients with MSP1 associated VCP variants at risk for PDB. However, diagnostic confirmation should be coupled with clinical history, biochemical analysis, and skeletal radiographs to facilitate early treatment and prevention complications, acknowledging its limited specificity.


Assuntos
Demência Frontotemporal , Distrofia Muscular do Cíngulo dos Membros , Miosite de Corpos de Inclusão , Osteíte Deformante , Masculino , Feminino , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Proteína com Valosina/genética , Proteínas de Ciclo Celular/genética , Osteíte Deformante/diagnóstico por imagem , Osteíte Deformante/genética , Proteína 1 de Superfície de Merozoito/genética , Tomografia Computadorizada por Raios X , Mutação , Miosite de Corpos de Inclusão/diagnóstico por imagem , Miosite de Corpos de Inclusão/genética
2.
Nat Commun ; 15(1): 2459, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503733

RESUMO

The hexameric AAA+ ATPase p97/VCP functions as an essential mediator of ubiquitin-dependent cellular processes, extracting ubiquitylated proteins from macromolecular complexes or membranes by catalyzing their unfolding. p97 is directed to ubiquitylated client proteins via multiple cofactors, most of which interact with the p97 N-domain. Here, we discover that FAM104A, a protein of unknown function also named VCF1 (VCP/p97 nuclear Cofactor Family member 1), acts as a p97 cofactor in human cells. Detailed structure-function studies reveal that VCF1 directly binds p97 via a conserved α-helical motif that recognizes the p97 N-domain with unusually high affinity, exceeding that of other cofactors. We show that VCF1 engages in joint p97 complex formation with the heterodimeric primary p97 cofactor UFD1-NPL4 and promotes p97-UFD1-NPL4-dependent proteasomal degradation of ubiquitylated substrates in cells. Mechanistically, VCF1 indirectly stimulates UFD1-NPL4 interactions with ubiquitin conjugates via its binding to p97 but has no intrinsic affinity for ubiquitin. Collectively, our findings establish VCF1 as an unconventional p97 cofactor that promotes p97-dependent protein turnover by facilitating p97-UFD1-NPL4 recruitment to ubiquitylated targets.


Assuntos
Proteínas de Ciclo Celular , Ubiquitina , Humanos , Ligação Proteica , Ubiquitina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Mol Cell ; 84(7): 1290-1303.e7, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38401542

RESUMO

Most eukaryotic proteins are degraded by the 26S proteasome after modification with a polyubiquitin chain. Substrates lacking unstructured segments cannot be degraded directly and require prior unfolding by the Cdc48 ATPase (p97 or VCP in mammals) in complex with its ubiquitin-binding partner Ufd1-Npl4 (UN). Here, we use purified yeast components to reconstitute Cdc48-dependent degradation of well-folded model substrates by the proteasome. We show that a minimal system consists of the 26S proteasome, the Cdc48-UN ATPase complex, the proteasome cofactor Rad23, and the Cdc48 cofactors Ubx5 and Shp1. Rad23 and Ubx5 stimulate polyubiquitin binding to the 26S proteasome and the Cdc48-UN complex, respectively, allowing these machines to compete for substrates before and after their unfolding. Shp1 stimulates protein unfolding by the Cdc48-UN complex rather than substrate recruitment. Experiments in yeast cells confirm that many proteins undergo bidirectional substrate shuttling between the 26S proteasome and Cdc48 ATPase before being degraded.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Poliubiquitina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mamíferos/metabolismo
4.
Nat Commun ; 15(1): 1165, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326311

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Proteômica , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias Renais/genética , Cromatina/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cromossomos Humanos X/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína com Valosina/genética
5.
Ann Clin Transl Neurol ; 11(4): 938-945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287512

RESUMO

OBJECTIVE: Multisystem proteinopathy (MSP) is an inherited disorder in which protein aggregates with TAR DNA-binding protein of 43 kDa form in multiple organs. Mutations in VCP, HNRNPA2B1, HNRNPA1, SQSTM1, MATR3, and ANXA11 are causative for MSP. This study aimed to conduct a nationwide epidemiological survey based on the diagnostic criteria established by the Japan MSP study group. METHODS: We conducted a nationwide epidemiological survey by administering primary and secondary questionnaires among 6235 specialists of the Japanese Society of Neurology. RESULTS: In the primary survey, 47 patients with MSP were identified. In the secondary survey of 27 patients, inclusion body myopathy was the most common initial symptom (74.1%), followed by motor neuron disease (11.1%), frontotemporal dementia (FTD, 7.4%), and Paget's disease of bone (PDB, 7.4%), with no cases of parkinsonism. Inclusion body myopathy occurred most frequently during the entire course of the disease (81.5%), followed by motor neuron disease (25.9%), PDB (18.5%), FTD (14.8%), and parkinsonism (3.7%). Laboratory findings showed a high frequency of elevated serum creatine kinase levels and abnormalities on needle electromyography, muscle histology, brain magnetic resonance imaging, and perfusion single-photon emission computed tomography. INTERPRETATION: The low frequency of FTD and PDB may suggest that FTD and PDB may be widely underdiagnosed and undertreated in clinical practice.


Assuntos
Demência Frontotemporal , Doença dos Neurônios Motores , Doenças Musculares , Transtornos Parkinsonianos , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Japão/epidemiologia , Proteína com Valosina/genética , Proteínas de Ligação a RNA , Proteínas Associadas à Matriz Nuclear
6.
Brain ; 147(3): 970-979, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882537

RESUMO

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two incurable neurodegenerative diseases that exist on a clinical, genetic and pathological spectrum. The VCP gene is highly relevant, being directly implicated in both FTD and ALS. Here, we investigate the effects of VCP mutations on the cellular homoeostasis of human induced pluripotent stem cell-derived cortical neurons, focusing on endolysosomal biology and tau pathology. We found that VCP mutations cause abnormal accumulation of enlarged endolysosomes accompanied by impaired interaction between two nuclear RNA binding proteins: fused in sarcoma (FUS) and splicing factor, proline- and glutamine-rich (SFPQ) in human cortical neurons. The spatial dissociation of intranuclear FUS and SFPQ correlates with alternative splicing of the MAPT pre-mRNA and increased tau phosphorylation. Importantly, we show that inducing 4R tau expression using antisense oligonucleotide technology is sufficient to drive neurodegeneration in control human neurons, which phenocopies VCP-mutant neurons. In summary, our findings demonstrate that tau hyperphosphorylation, endolysosomal dysfunction, lysosomal membrane rupture, endoplasmic reticulum stress and apoptosis are driven by a pathogenic increase in 4R tau.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Proteína com Valosina , Humanos , Esclerose Amiotrófica Lateral/genética , Demência Frontotemporal/genética , Lisossomos , Proteína com Valosina/genética
8.
J Biol Chem ; 300(1): 105540, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072049

RESUMO

Two distinct p97ATPase-mediated membrane fusion pathways are required for Golgi and endoplasmic reticulum (ER) biogenesis, namely, the p97/p47 pathway and the p97/p37 pathway. p97 (VCP)/p47 complex-interacting protein p135 (VCIP135) is necessary for both of these pathways. Although VCIP135 is known to form a complex with p97 in the cytosol, the role of this complex in Golgi and ER biogenesis has remained unclear. In this study, we demonstrated that VCIP135 has two distinct p97-binding sites at its N- and C-terminal regions. In particular, the C-terminal binding site includes the SHP motif, which is also found in other p97-binding proteins, such as p47, p37, and Ufd1. We also clarified that VCIP135 binds to both the N- and C-terminal regions of p97; that is, the N- and C-terminal binding sites in VCIP135 interact with the C- and N-terminal regions of p97, respectively. These two interactions within the complex are synchronously controlled by the nucleotide state of p97. We next generated VCIP135 mutants lacking each of the p97-binding sites to investigate their functions in living cells and clarified that VCIP135 is involved in Golgi and ER biogenesis through its two distinct interactions with p97. VCIP135 is hence a unique p97-binding protein that functions by interacting with both the N-and C-terminal regions of p97, which strongly suggests that it plays crucial roles in p97-mediated events.


Assuntos
Endopeptidases , Proteínas Nucleares , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endopeptidases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Células HeLa , Humanos
9.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38095639

RESUMO

Metastasis is the main cause of colorectal cancer (CRC)-related death, and the 5-year relative survival rate for CRC patients with distant metastasis is only 14%. X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a zinc-rich protein belonging to the interferon (IFN)-induced gene family. Here, we report a metastasis-promoting role of XAF1 in CRC by acting as a novel adaptor of valosin-containing protein (VCP). XAF1 facilitates VCP-mediated deubiquitination of the E3 ligase RING finger protein 114 (RNF114), which promotes K48-linked ubiquitination and subsequent degradation of junction plakoglobin (JUP). The XAF1-VCP-RNF114-JUP axis is critical for the migration and metastasis of CRC cells. Moreover, we observe correlations between the protein levels of XAF1, RNF114, and JUP in clinical samples. Collectively, our findings reveal an oncogenic function of XAF1 in mCRC and suggest that the XAF1-VCP-RNF114-JUP axis is a potential therapeutic target for CRC treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Neoplasias Colorretais , Peptídeos e Proteínas de Sinalização Intracelular , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Colorretais/genética , gama Catenina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
10.
Neuromuscul Disord ; 34: 68-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157654

RESUMO

Valosin-containing protein (VCP) disease is an autosomal dominant multisystem proteinopathy associated with hereditary inclusion body myopathy, Paget disease of bone, and frontotemporal dementia. Myopathy frequently results in respiratory muscle weakness, leading to early mortality due to respiratory failure. We investigated the effects of a remotely administered inspiratory muscle training program in individuals with VCP disease. Nine adults with VCP mutation-positive familial myopathy without evidence of dementia were recruited for a 40-week remotely administered study. Baseline performance was established during the first 8 weeks, followed by 32 weeks of inspiratory muscle training. The primary outcome was maximum inspiratory pressure (MIP). The secondary and exploratory endpoints included spirometry, grip strength, Inclusion Body Myopathy Functional Rating Scale (IBMFRS), Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS), timed up and go, and six-minute walk test (6MWT). During the treatment phase, MIP increased significantly by a weekly mean of 0.392cm. H2O (p=0.023). In contrast, grip strength and ALSFRS significantly decreased by 0.088 lbs. (p=0.031) and 0.043 points (p=0.004) per week, respectively, as expected from the natural progression of this disease. A remotely administered inspiratory muscle training program is therefore feasible, safe, and well-tolerated in individuals with VCP disease and results in improved inspiratory muscle strength.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doenças Musculares , Treinamento de Força , Adulto , Humanos , Proteína com Valosina/genética , Respiração , Mutação , Proteínas de Ciclo Celular/genética
11.
Neuromuscul Disord ; 34: 89-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159460

RESUMO

Valosin-containing protein (VCP) pathogenic variants are the most common cause of multisystem proteinopathy presenting with inclusion body myopathy, amyotrophic lateral sclerosis/frontotemporal dementia, and Paget disease of bone in isolation or in combination. We report a patient manifesting with adolescent-onset myopathy caused by a novel heterozygous VCP variant (c.467G > T, p.Gly156Val). The myopathy manifested asymmetrically in lower limbs and extended to proximal, axial, and upper limb muscles, with loss of ambulation at age 35. Creatine kinase value was normal. Alkaline phosphatase was elevated. Electromyography detected mixed low amplitude, short duration and high amplitude, long duration motor unit potentials. Muscle biopsy showed features of inclusion body myopathy, which in combination with newly diagnosed Paget disease of bone, supported the VCP variant pathogenicity. In conclusion, VCP-multisystem proteinopathy is not only a disease of adulthood but can have a pediatric onset and should be considered in differential diagnosis of neuromuscular weakness in the pediatric population.


Assuntos
Doenças Musculares , Miosite de Corpos de Inclusão , Osteíte Deformante , Deficiências na Proteostase , Humanos , Criança , Adolescente , Adulto , Proteína com Valosina/genética , Osteíte Deformante/diagnóstico , Osteíte Deformante/genética , Osteíte Deformante/patologia , Mutação/genética , Proteínas de Ciclo Celular/genética , Miosite de Corpos de Inclusão/diagnóstico , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/patologia
12.
J Nutr Biochem ; 125: 109555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147913

RESUMO

Age-related impairment of autophagy accelerates muscle loss and lead to sarcopenia. Betaine can delay muscle loss as a dietary methyl donor via increasing S-adenosyl-L-methionine (SAM, a crucial metabolite for autophagy regulation) in methionion cycle. However, whether betaine can regulate autophagy level to attenuate degeneration in aging muscle remains unclear. Herein, male C57BL/6J young mice (YOU, 2-month-old), old mice (OLD, 15-month-old), and 2%-betaine-treated old mice (BET, 15-month-old) were employed and raised for 12 weeks. All mice underwent body composition examination and grip strength test before being sacrificed. Betaine alleviated age-related decline in muscle mass and strength. Meanwhile, betaine preserved the expression autophagy markers (Atg5, Atg7, LC3-II, and Beclin1) both at transcriptional and translational level during the aging process. RNA-sequencing results generated from mice gastrocnemius muscle found Mettl21c, a SAM-dependent autophagy-regulating methyltransferase, was significantly higher expressed in BET and YOU group. Results were further validated by qPCR and western bloting. In vitro, C2C12 cells with or without Mettl21c RNA interference were treated different concentration of betaine (0 mM, 10 mM) under methionine-starved condition. Compared with control group, betaine upregulated autophagy markers expression and autophagy flux. By increasing the SAM level, betaine facilitated trimethylation of p97 (Mettl21c downstream effector) into valosin-containing protein (VCP). Increased VCP promoted autophagic turnover of cellular components, ATP production, and cell differentiation. Knock-down of Metthl21c dismissed improvements mentioned above. Collectively, betaine could enhance aged skeletal muscle autophagy level via Mettl21c/p97/VCP axis to delay muscle loss.


Assuntos
Betaína , Músculo Esquelético , Masculino , Animais , Camundongos , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Betaína/farmacologia , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Autofagia/genética
13.
Am J Hum Genet ; 110(11): 1959-1975, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37883978

RESUMO

Valosin-containing protein (VCP) is an AAA+ ATPase that plays critical roles in multiple ubiquitin-dependent cellular processes. Dominant pathogenic variants in VCP are associated with adult-onset multisystem proteinopathy (MSP), which manifests as myopathy, bone disease, dementia, and/or motor neuron disease. Through GeneMatcher, we identified 13 unrelated individuals who harbor heterozygous VCP variants (12 de novo and 1 inherited) associated with a childhood-onset disorder characterized by developmental delay, intellectual disability, hypotonia, and macrocephaly. Trio exome sequencing or a multigene panel identified nine missense variants, two in-frame deletions, one frameshift, and one splicing variant. We performed in vitro functional studies and in silico modeling to investigate the impact of these variants on protein function. In contrast to MSP variants, most missense variants had decreased ATPase activity, and one caused hyperactivation. Other variants were predicted to cause haploinsufficiency, suggesting a loss-of-function mechanism. This cohort expands the spectrum of VCP-related disease to include neurodevelopmental disease presenting in childhood.


Assuntos
Doenças Musculares , Transtornos do Neurodesenvolvimento , Adulto , Humanos , Proteína com Valosina/genética , Hipotonia Muscular , Mutação de Sentido Incorreto/genética
14.
Proc Natl Acad Sci U S A ; 120(41): e2221653120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788309

RESUMO

Fatty acid oxidation (FAO) fuels many cancers. However, knowledge of pathways that drive FAO in cancer remains unclear. Here, we revealed that valosin-containing protein (VCP) upregulates FAO to promote colorectal cancer growth. Mechanistically, nuclear VCP binds to histone deacetylase 1 (HDAC1) and facilitates its degradation, thus promoting the transcription of FAO genes, including the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). FAO is an alternative fuel for cancer cells in environments exhibiting limited glucose availability. We observed that a VCP inhibitor blocked the upregulation of FAO activity and CPT1A expression triggered by metformin in colorectal cancer (CRC) cells. Combined VCP inhibitor and metformin prove more effective than either agent alone in culture and in vivo. Our study illustrates the molecular mechanism underlying the regulation of FAO by nuclear VCP and demonstrates the potential therapeutic utility of VCP inhibitor and metformin combination treatment for colorectal cancer.


Assuntos
Neoplasias Colorretais , Metformina , Humanos , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Processos Neoplásicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ácidos Graxos/metabolismo , Metformina/farmacologia , Carnitina O-Palmitoiltransferase/metabolismo , Oxirredução
15.
Curr Opin Neurol ; 36(5): 432-440, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678339

RESUMO

PURPOSE OF REVIEW: Missense mutations in valosin-containing protein (VCP) can lead to a multisystem proteinopathy 1 (MSP1) with any combination of limb-girdle distribution inclusion body myopathy (IBM) (present in about 90% of cases), Paget's disease of bone, and frontotemporal dementia (IBMPFD). VCP mutations lead to gain of function activity with widespread disarray in cellular function, with enhanced ATPase activity, increased binding with its cofactors, and reduced mitofusin levels. RECENT FINDINGS: This review highlights novel therapeutic approaches in VCP-MSP in in-vitro and in-vivo models. Furthermore, we also discuss therapies targeting mitochondrial dysfunction, autophagy, TDP-43 pathways, and gene therapies in other diseases with similar pathway involvement which can also be applicable in VCP-MSP. SUMMARY: Being a rare disease, it is challenging to perform large-scale randomized control trials (RCTs) in VCP-MSP. However, it is important to recognize potential therapeutic targets, and assess their safety and efficacy in preclinical models, to initiate RCTs for potential therapies in this debilitating disease.


Assuntos
Demência Frontotemporal , Distrofia Muscular do Cíngulo dos Membros , Humanos , Proteína com Valosina/genética , Demência Frontotemporal/genética , Demência Frontotemporal/terapia , Terapia Genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia
16.
Elife ; 122023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713320

RESUMO

The ATPase p97 (also known as VCP, Cdc48) has crucial functions in a variety of important cellular processes such as protein quality control, organellar homeostasis, and DNA damage repair, and its de-regulation is linked to neuromuscular diseases and cancer. p97 is tightly controlled by numerous regulatory cofactors, but the full range and function of the p97-cofactor network is unknown. Here, we identify the hitherto uncharacterized FAM104 proteins as a conserved family of p97 interactors. The two human family members VCP nuclear cofactor family member 1 and 2 (VCF1/2) bind p97 directly via a novel, alpha-helical motif and associate with p97-UFD1-NPL4 and p97-UBXN2B complexes in cells. VCF1/2 localize to the nucleus and promote the nuclear import of p97. Loss of VCF1/2 results in reduced nuclear p97 levels, slow growth, and hypersensitivity to chemical inhibition of p97 in the absence and presence of DNA damage, suggesting that FAM104 proteins are critical regulators of nuclear p97 functions.


Assuntos
Proteínas Nucleares , Proteína com Valosina , Humanos , Proteína com Valosina/genética , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular
17.
J Neurol ; 270(12): 5849-5865, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603075

RESUMO

BACKGROUND: The diagnosis of patients with mutations in the VCP gene can be complicated due to their broad phenotypic spectrum including myopathy, motor neuron disease and peripheral neuropathy. Muscle MRI guides the diagnosis in neuromuscular diseases (NMDs); however, comprehensive muscle MRI features for VCP patients have not been reported so far. METHODS: We collected muscle MRIs of 80 of the 255 patients who participated in the "VCP International Study" and reviewed the T1-weighted (T1w) and short tau inversion recovery (STIR) sequences. We identified a series of potential diagnostic MRI based characteristics useful for the diagnosis of VCP disease and validated them in 1089 MRIs from patients with other genetically confirmed NMDs. RESULTS: Fat replacement of at least one muscle was identified in all symptomatic patients. The most common finding was the existence of patchy areas of fat replacement. Although there was a wide variability of muscles affected, we observed a common pattern characterized by the involvement of periscapular, paraspinal, gluteal and quadriceps muscles. STIR signal was enhanced in 67% of the patients, either in the muscle itself or in the surrounding fascia. We identified 10 diagnostic characteristics based on the pattern identified that allowed us to distinguish VCP disease from other neuromuscular diseases with high accuracy. CONCLUSIONS: Patients with mutations in the VCP gene had common features on muscle MRI that are helpful for diagnosis purposes, including the presence of patchy fat replacement and a prominent involvement of the periscapular, paraspinal, abdominal and thigh muscles.


Assuntos
Músculo Esquelético , Doenças Musculares , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação/genética , Imageamento por Ressonância Magnética/métodos , Proteína com Valosina/genética
18.
Mol Neurodegener ; 18(1): 52, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37545006

RESUMO

The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.


Assuntos
Doenças Neurodegenerativas , Humanos , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Doenças Neurodegenerativas/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Mutação , Proteostase , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
19.
Clin Neurol Neurosurg ; 232: 107875, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37441929

RESUMO

OBJECTIVE: Mutations in the valosin-containing protein (VCP) gene cause autosomal dominant multisystem proteinopathy 1 (MSP1), characterized by a variable combination of inclusion body myopathy (IBM), Paget's disease of bone (PDB), and frontotemporal dementia (FTD). Here we report a novel VCP missense mutations in an Italian family with FTD as the prevalent manifestation and compare our results with those described in the literature. METHODS: We described the clinical, molecular, and imaging data of the studied family. We also conducted a systematic literature search with the aim of comparing our findings with previously reported VCP-related phenotypes. RESULTS: A novel heterozygous VCP missense mutation (c 0.473 T > C/p.Met158Thr) was found in all the affected family members. The proband is a 69-year-old man affected by progressive muscle weakness since the age of 49. Muscle MRI showed patchy fatty infiltration in most muscles, and STIR sequences revealed an unusual signal increase in distal leg muscles. At age 65, he presented a cognitive disorder suggestive of behavioral variant FTD. A bone scintigraphy also revealed PDB. The patient's mother, his maternal aunt and her daughter had died following a history of cognitive deterioration consistent with FTD; the mother also had PDB. No relatives had any muscular impairments. Reviewing the literature data, we observed a different sex distribution of VCP-related phenotypes, being FTD prevalence higher among women as compared to men (51.2 % vs 31.2 %) and IBM prevalence higher among men as compared to women (92.1 % vs 72.8 %). DISCUSSION: This study broadened our clinical, genetic, and imaging knowledge of VCP-related disorders.


Assuntos
Demência Frontotemporal , Distrofia Muscular do Cíngulo dos Membros , Masculino , Humanos , Feminino , Idoso , Proteína com Valosina/genética , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Mutação , Fenótipo
20.
Cell Mol Life Sci ; 80(8): 213, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464072

RESUMO

Dual specificity phosphatase 1 (DUSP1) and valosin-containing protein (VCP) have both been reported to regulate mitochondrial homeostasis. However, their impact on mitochondrial quality control (MQC) and myocardial function during LPS-induced endotoxemia remains unclear. We addressed this issue by modeling LPS-induced endotoxemia in DUSP1 transgenic (DUSP1TG) mice and in cultured DUSP1-overexpressing HL-1 cardiomyocytes. Accompanying characteristic structural and functional deficits, cardiac DUSP1 expression was significantly downregulated following endotoxemia induction in wild type mice. In contrast, markedly reduced myocardial inflammation, cardiomyocyte apoptosis, cardiac structural disorder, cardiac injury marker levels, and normalized systolic/diastolic function were observed in DUSP1TG mice. Furthermore, DUSP1 overexpression in HL-1 cells significantly attenuated LPS-mediated mitochondrial dysfunction by preserving MQC, as indicated by normalized mitochondrial dynamics, improved mitophagy, enhanced biogenesis, and attenuated mitochondrial unfolded protein response. Molecular assays showed that VCP was a substrate of DUSP1 and the interaction between DUSP1 and VCP primarily occurred on the mitochondria. Mechanistically, DUSP1 phosphatase domain promoted the physiological DUSP1/VCP interaction which prevented LPS-mediated VCP Ser784 phosphorylation. Accordingly, transfection with a phosphomimetic VCP mutant abolished the protective actions of DUSP1 on MQC and aggravated inflammation, apoptosis, and contractility/relaxation capacity in HL-1 cardiomyocytes. These findings support the involvement of the novel DUSP1/VCP/MQC pathway in the pathogenesis of endotoxemia-caused myocardial dysfunction.


Assuntos
Cardiomiopatias , Endotoxemia , Animais , Camundongos , Cardiomiopatias/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/complicações , Lipopolissacarídeos/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...